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The multifractaI function f(~) is generalized to describe noisy nonlinear random 
resistor networks. An approximant function for the family of noise exponents is 
introduced that provides a good description of real percolative systems for 
strong nonlinearities. By mapping from this family to the multifractal function, 
one can approximate the latter. A scale transformation of c~ in the approxima- 
tion makes the multifractal function universal for all nonlinearities and by 
applying an additional transformation, this function becomes superuniversal, 
i.e., independent of the dimension. The universality is demonstrated for the 
Mandelbrot-Given structure and the implications of these results are discussed 
on real percolative systems. 
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1. I N T R O D U C T I O N  

Multifractal analysis is a convenient tool to describe distributions whose 
moments scale independently of each other (1-4) at a critical point. Such a 
distribution appears within the framework of random resistor networks 
(RRNs) at the percolation threshold, when the elementary resistances are 
noisy/5 7/ The cumulants of the global resistance distribution (Rq)~.  then 
scale as powers of the system size with an infinite set of independent 
exponents ~(q). This set is closely connected to the multifractal function 
f(~),(7) and there exists a one-to-one mapping between the two functions, (7,8) 
which shows that the information contained in f (~)  already exists in ~(q). 
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The study of noise and distributions extended to nonlinear RRNs whose 
elements obey (9' 10) 

V= r III ~ Sign(I) (1) 

where V, r, and I are the voltage, resistance, and current that a bond 
supports, respectively. Introducing noise to such systems at percolation, 
one obtains a generalized infinite set of exponents, ~(q,/3).(8,1o.11/ 

In this paper we study the universality properties of the noise 
exponents by generalizing the mapping between ~(q,/3) and f(7,/3). The 
main results are: 

1. The generalization of the mapping between the nonlinear RRN 
noise exponents ~(q,/3) and the multifractal function, which becomes /3 
dependent, f(ct,/3). 

2. The construction of an explicit approximant function (AF) for 
f(e,/3) to describe actual percolative RRNs, and the study of its properties. 

3. The AF becomes universal for all values of /3 when applying a 
scale transformation to e, thus implying an "almost" universality for real 
percolative networks. 

4. The transformation of the AF to a superuniversal form, i.e., the 
function becomes independent of the dimension d as well as of/3. 

Finally, I discuss the experimental implications of the results and 
suggest explicit ways to check them. 

2. NOISE IN NONLINEAR RRNs AND THE M A P P I N G  BETWEEN 
~(q ,  13) and f ( a ,  IB) 

Consider a nonlinear RRN that obeys (1), whose elementary resistors 
r are narrowly distributed around some mean value ro due to some 
physical mechanism. The cumulants of the global resistance distribution 
scale as powers of L, the separation between the terminals, 

V Mq(fl)=(Rq)cm ~ \0%J (rq)"~L~(q'#) (2) 
bonds 

These cumulants were shown to equal the [(/3+ 1)q] th moments of the 
current distribution in the nonnoisy network (5'1e~ t2) 

Mq~- ~ i(~+l)q~L~'(q'~l (3) 
bonds 
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thus offering a connection between the two distributions. We will assume 
boundary conditions of a unit current injected into one terminal and 
extracted from the other. It was recently shown that the power law 
behavior of M e breaks down for values of q that are smaller than some 
small negative value q, < 0 J  *) Therefore we will concentrate on positive 
values of q and disregard the nonmultifractal behavior for q < 0 altogether. 

Much information has been accumulated about nonlinear RRNs. (9'1~ 
In particular, the value of ~(q, fl) is known exactly for several values of q 
and fl and is known with great accuracy for two lines in the fl-q plane: 
(i) f i=  1 and all q,(5,81 and ( i i ) q =  1 and all fl.(~o/ The exact values are 
listed in Table I. Generally, ~(q, fl) is a nonincreasing function of q and of 
ft. Moreover, it is convex as a function of q for all fi except at 
fl = - 1 ,  0 - ,  0 +, and oo, where 8~(q, fi)/Sfl vanishes for all q.(lo) 

To map from ~(q, fi) t o f (~ ,  fl), first note that M I ( ~ ) = R ( f i ) i n  (2) is  
the nonlinear resistance. Therefore, defining a "bond probability" 

Pb - R(fl) (4) 

we obtain a proper normalized distribution ~bPb = 1 whose qth moment 
is 

Mq(fi) L~(q,~) qr(r (5) 
h 

Table I. Exact Values of r fl) 
for Several Values of q and ~ 

~(o,/~) = D~ 
~(1, 1)=~R 

~)(q, o~)= 1/v 
~(q ,  0 + )  = ~'min 
r / = ~  
~;(q, - l ) = D~ 

~(q, - o~ ) = -flz 

u ~min is the critical exponent of the minimal 
path between the terminals; ~'ma~ is the criti- 
cal exponent of the maximal path between 
the terminals; z = log N0/log L, where N o is 
the maximal  number  of bonds that one can 
cut by a simply connected surface so as to 
render the two terminals disconnected. 
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where ~'(/3) = 5(1,/3). Now we can follow Halsey et al. 131 and define a set of 
fractal dimensionalities D(q) via 

q~(fl) - ~(q, fl) #q ~ LI1 --q)D(q) D(q) = q - 1 (6) 

It is easy to see that D(0) is the fractal dimension of the backbone D, ,  
D ( ~ )  = ~'(fl), and D(1)= ~(fl)-~/~q[~(q, fl)]q= 1. In ref. 7 it was shown 
for the linear network that 

d 
~(q) = 5(1)-~qq ~(q) (7a) 

f(q) = ~(q) - q ff-~ ~(q) (7b) 

These relations hold for the nonlinear case as well, where the exponents 
~(q) become fl dependent and the derivatives are partial at constant ft. 
Eliminating q between Eqs. (7), one obtains the nonlinear multifractai func- 
t ionf(~,  fl). Thus, relations (7) constitute the mapping between ~(q, fl) and 
f(e,/3). The aforementioned restriction on the positivity of q limits e and 
f to the ranges 

~(/3) ~ ~ ~ 0~ma x =~(fl)-(O~(q' fl)) 
\ c3q q=o (8) 

1/v<~f ~DB 

Next we write f(~,/3) in terms of another variable to find general relations 
that will be used below. We scale e by 

co - (9) 
~max--~Xrnin (~/~q)q=O (O~/~q)q=O 

where we inserted the extreme values of c~ that correspond to q = 0 ,  oe, 
respectively. Using relations (7), we can obtain a general expression for the 
multifractal function in terms of the new variable, 

f(co'/3)=(~-:~'~kvq)q:o [ q  ] fo co(q')dq'-qco + D, (10) 

where the constant of integration is determined by the condition 
f ( q = O , / 3 ) = D , .  Generally there may appear a dependence of f(co,/3) 
on fl via the fact that for constant co, q is a function of /3. However, 
approximating ~(q, fl), as we do below, and mapping the approximation to 
f(co,/3), we find that the multifractal function becomes independent of/3. 
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3. AN AF FOR f (a ,  13) 

Next we construct an AF for ~(q, fl) by adopting the exponential form 
proposed for the linear ~(q, 1) in ref. 8. Replace the linear conductivity 
exponent (R by ~'(fl). Then our approximation is 

~/(q, fl) = 1Iv + (D 8 - l / v )  e q'z(~) (11) 

where 

((/D- ]/v 
v(/b = In 

b s -  1/v 

For the value of ~'(fl), let us use an approximation proposed in ref. 10. 
Equation (11) provides a good description for real percolative systems 
whenever / />  1. In the past it was shown that a renormalization on the 
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Fig. 1. The function ~(q, fl) for several values of/~: the lower line consists of the approxi- 
mant exponential function, while the upper line comprises an exact solution on the 
Mandelbrot-Given structure. 
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Mandelbrot-Given structure yields good estimation for many critical 
exponents for linear two-dimensional resistor networks3 TM Therefore, com- 
paring between our approximation and the noise exponents (that can be 
found exactly) on this structure, one can assess the adequacy of the AF. As 
we see from Fig. 1, the two curves look very close for different values of ft. 
As /3 decreases below 1, discrepancies appear for larger and larger values 
of q, rendering (11 ) inapplicable for too small values of ft. These discrepan- 
cies may arise from the fact that we actually compare the AF with another 
approximation rather than with real data. Another source for error may be 
the fact that we approximate the contribution of the blobs' resistance to the 
power 1Iv (caused by the singly connected bonds) with a single exponential 
form, rather than by many such terms, as occurs in real systems. 
Nevertheless, by limiting this analysis for/3 > 1, one can regard (11) as a 
good description. For /3 = 1, (11) was found to describe accurately real 
percolative networks (see Fig. 1 in ref. 8). Using (7) and eliminating q, 
we find 

DB- 1/v) 
f(~,fl)=l/v+cI)(~,fl) l + l n  ~ , - f l ~ - ]  (12) 

where ~b(c~, f l )= [~'(fl)- c~]/7(fl). Thus, we have an explicit approximation 
for the multifractal function in nonlinear networks. 

4. U N I V E R S A L  A N D  S U P E R U N I V E R S A L  M U L T I F R A C T A L  
F U N C T I O N S  

I proceed to show that the above approximation displays a universal 
behavior for all values of fl to which it is valid. Applying (10) for the 
approximant function (12), let us identify ,/(fl)=ln(co)/q and qs((o, fl)--_ 
~o(D 8 -  1/v), which yields 

f(co, fl)= 1/v + co(DB-- l/v)(1 --ln o)) (13) 

Expression (14) is independent of fl for fixed co, namely, when plotting the 
multifractal function vs. co for any value of fl, all the lines will collapse on 
a universal curve that is independent of/3. 

As a check on this conjectured universality, I plot f(e)) for several 
values of fl (taking a very wide range of values) for the Mandelbrot-Given 
structure. The resulting curves do appear to collapse to a nearly universal 
line for all values of fl greater then fl > 1, as is shown in Fig. 2. I discuss 
the ramifications of this universality below. 
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Fig. 2. Plot off(co, /3)  vs. o) for/3 = 2.0, 3.0, and 20. 

Inspecting (13), one realize that it depends on the dimension d only 
through the exponents De and v. However, if one scales now f(co) by 

f -  1/v 
g(co) (14) 

DB- 1/v 

one obtains a more striking result. The function g(co) depends only on co 
and is superuniversal with respect to the dimension, 

g(co) = co(1 - In co) (15) 

Thus, this information yields a function that is valid for all dimensions. 
Due to the good numerical results that the approximation for ~(q,/~) yields 
in two dimensions, it seems plausible that if not exactly superuniversal, 
then this description is very close to being such in real percolating RRNs. 
I elaborate on this point in the following concluding section. 

5.  C O N C L U S I O N  A N D  D I S C U S S I O N  

To conclude, I have generalized the multifractal formalism to describe 
nonlinear random resistor networks. I constructed an explicit approximant 



240 Blumenfeld 

function for the resulting multifractal function f(e, /~) that mimicks well 
real nonlinear percolative RRNs, though it is not exact. (8) Next I showed 
that f(c~, fi) can be made universal by scaling ~ to a new variable. 
Employing the accuracy of the approximation for fl > 1, I conjecture that 
this universality is "almost" exact for real RRNs. Such a universality is of 
practical importance because ( i ) i t  was shown that many topological 
properties of the percolative underlying network can be derived by 
studying the nonlinear conductivity problem, (9'1~ (ii) another ramification 
of this conjecture concerns the study of noise in low-temperature ceramics 
that display a power law characteristic V - I  function. (14) Since the power 
in such functions is temperature dependent, then universality in this case 
implies temperature independence in the right variables. Hence, I predict 
that, in probing the shape of the function f(~o) for powers fl that are larger 
than one, almost no change will be detected as a function of the 
temperature. 

Next I transformed the approximate f(co) to a superuniversal dimen- 
sion independent function, g(co). To the best of my knowledge, no tests 
of this property were done in the past for real percolating RRNs. 
Nevertheless, there exist accurate numerical results for ~(q, 1) in two and 
three dimensions. (s'8) Therefore, one can check the superuniversality by 
transforming to g(co) at fi = 1 and comparing the two curves. However, one 
should bear in mind that fl ~_ 1 may be too near to the lower limit for the 
conjecture to hold. Another check can be performed in 6 - ~  dimensions 
where the functional dependence of the function ~(q, fl) on the dimen- 
sionality is exactly known. (15) These two checks are under way and will be 
reported in a forthcoming paper. One can use these properties of g(co) to 
measure the behavior in low-dimensional systems for inferring the behavior 
in higher dimensions. Alternatively, one can use the universality to measure 
properties of an RRN with a given nonlinearity to conclude for a system 
having a different one. Moreover, if it can be shown that linear networks 
can also be described adequately by this universality, then one can actually 
probe properties of nonlinear networks by measuring linear ones. Thus, the 
universality and the superuniversality of g(co) may turn out to be a very 
useful tool in the study of noisy nonlinear networks. 

A C K N O W L E D G M E N T S  

I am grateful to Prof. D. J. Bergman and to Prof. A. Aharony for their 
critical reading and for helpful suggestions. This work was supported by 
grants from the U.S. Israel Binational Science Foundation (BSF) and the 
Israel Academy of Sciences and Humanities. 



Multifractals in Nonlinear Resistor Networks 241 

R E F E R E N C E S  

1. B. B. Mandelbrot, J. Fluid Mech. 62:331 (1976); Ann. Israel Phys. Soc. 2:225 (1978). 
2. H. G. E. Hentschel and I. Procaccia, Physica 8D:435 (1983). 
3. T. C. Halsey, M. H, Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman, Phys. Rev. 

A 33:1141 (1986). 
4. T. C. Halsey, P. Meakin, and I. Procaccia, Phys. Rev. Lett. 56:854 (1986). 
5. R. Rammel, C. Tannous, and A.-M. S. Tremblay, Phys. Rev. A 31:2662 (1985). 
6. L. de Arcangelis, S. Redner, and A. Coniglio, Phys. Rev. B 31:4725 (1985). 
7. A. Coniglio, Physica 140A:51 (1986). 
8. R. Blumenfeld, Y. Meir, A. Aharony, and A. B. Harris, Phys. Rev. B 35:3524 (1987). 
9. S. W. Kenkel and J. P, Straley, Phys. Rev. Lett. 49:767 (1982); J.P. Straley and 

S. W. Kenkel, Phys. Rev. B 29:6299 (1984). 
10. R. Blumenfeld and A. Aharony, J. Phys. A: Math. Gen. 18:L443 (1985); R. Blumenfeld, 

Y. Meir, A. B. Harris, and A. Aharony, J. Phys. A: Math. Gen. 19:L791 (1986); Y. Meir, 
R. Blumenfeld, A. Aharony, and A. B. Harris, Phys. Rev. B 34:3424 (1986), 

11. R. Rammal and A.-M. S. Tremblay, Phys. Rev. Lett. 58:415 (1987). 
12. R. M. Cohn, Am. Math. Soc. 1:316 (1950). 
13. B. B. Mandelbrot and J. A. Given, Phys. Rev. Left. 52:1853 (1984). 
14. G. A. Niklasson, Physica A, and references therein. 
15. A. B. Harris, Phys. Rev. B 35:5056 (1987). 


